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A Model-Free Approach to Low-Dose
Extrapolation
by D. Krewski,*t D. Gaylor,t and M. Szyszkowicz*

Fimates of ao a d with exposure to low leveis ofca c sutanes present intheenvI are genenaly
obtained by linear extrapolation from higher exposure levels at which risks can be estimated dirctly. In this paper, we
examine the scekntific basis for the assumption of low-se iearity in carchogenic risk nt and the different
stati methods that have been proposed for lnear extrapolatin. A model-free appch to liear extpolation i
described and ilustted using epdmilogial data on rdiactio n The satistcal properts of thb metbod
are empirically assessed using 572 selected sets of bioassay data.

Introduction
The goal of cancer risk assessment is to predict the risk of

tumor occurrence in people exposed to carcinogenic agents pre-
sent in the environment. Such estimates of risk are useful in
assessing the potential health impact of such exposures and in
evaluating risk management strategies for exposure mitigation.
In practice, cancer risk assessment is a complex process for a
complex disease. There are many different forms of cancer,
many with different disease etiologies. There exists uncertain-
ty regarding the mechanisms of initiation, promotion, and pro-
gression of neoplastic changes; the pharmacokinetic distribution
ofreactive carcinogenic metabolites within exposed individuals;
and the pharmacodynamic effects of the proximate carcinogen
in target tissues.
The most relevant data for prediction ofcancer risk are derived

from human populations subjected to well-characterized condi-
tions of exposure resulting in an elevated level of risk.
Epidemiological data have been of great value in identifying a

number of agents capable of causing cancer in humans, par-
ticularly through observations on certain occupational groups or
individuals exposed to moderately high levels ofthe agent of in-
terest. To estimate the potential risks associated with lower en-

vironmental exposures, downward extrapolation ofthese results
may be required.

In many cases, epidemiological data on a suspect carcinogen
may be nonexistent or inadequate for purposes of quantitative
risk assessment. This can occur due to a lack of accurate infor-
mation on exposure levels or the presence of confounding risk
factors. In this event, prediction of human cancer risks may be
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attempted using laboratory studies of carcinogenicity, on the
basis that animal carcinogens are presumptive human car-
cinogens (I) and that some degree ofcorrelation in carcinogenic
potency exists between animals and humans (2). Because ofthe
need to elicit potential toxic effects using a limited number ofex-
perimental subjects, the doses used in laboratory studies are
generally much higher than human exposure levels. Consequent-
ly, the need to extrapolate from high to low doses also arises with
toxicological data.

Past approaches to the low-dose extrapolation problem have
relied on an assumed mathematical function relating cancer risk
to exposure. There are many different candidates for such a dose-
response model, some with stronger biological bases than others
(3). Tolerance distribution models such as the probit and logit
have generally evolved in the study ofnoncarcinogenic end points
to describe dose-response relationships in the observable
response range. Mechanistic models describe carcinogenesis as
a stochastic multistage process, in which neoplastic conversion
ofstem cells proceeds through a series ofwell-defined stages in-
volving both genetic damage and changes in cell kinetics. Unfor-
tunately, with the limited information provided by
epidemiological and toxicological studies, it is possible to
postulate different models that fit the data equally well, but which
provide point estimates ofrisk at low doses that differ by several
orders of magnitude (4).
The purpose of this paper is to provide a procedure for low-

dose risk estimation that does not depend upon the selection of
a specific dose-response model. Our goal is to obtain the best
possible upper confidence limit on low-dose risk using only data
on tumor occurrence rates from epidemiological or toxicological
studies. The only assumption made is that the underlying dose-
response curve is linear or sublinear at low doses. Estimates of
low-dose riskbased on the model-free procedure proposed in this
paper are compared with corresponding estimates based on the
linearized multistage model using a large number of data sets
previously reported in the literature.
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Carcinogenic Risk Assessment
Multistage Model
The multistage model is currently the most widely used model

for cancer risk estimation. As formulated by Armitage and Doll
(5), the probability P(d) ofa tumor occurring following exposure
to a fixed dose d up to time t is given by

P(d) = 1 - exp [_ck n (a, + b4)J (1)
i-I

where i = 1, ... ,k indexes the distinct stages ofa k-stage process.
Here, ai +b, d represents the rate at which transitions to stage i
occur, with a, > 0 denoting the spontaneous transition rate and
bj d (bj2 0) representing the effects ofdose d. (The constant c is
proportional to the number ofindividual cells at risk in the tauget
tissue.) This model predicts that the age-specific cancer in-
cidence rates will be proportional to age raised to the power (k-i)
and provides a good description of human cancer incidence
curves with 2 .k . 6.
For applications, Crump et al. (6) proposed the modified

multistage model

P(d) = 1 - exp [-ctk E (qjd)] (2)
i-O

where the q* 2 0. Although the class ofpolynomials with non-
negative coefficients included in the exponent in Eq. (2) is
broader than the corresponding class in Eq. (1), this formulation
is easier to apply in terms ofparameter estimation. For small d,
we have

P(d)-P(0)= qld (3)
l-P(O)

Thus, when the background P(O) is small, qI represents the slope
ofthe dose-response curve in the low-dose region. Although the
original model [Eq. (1)] is linear at low doses, the extension in
Eq. (2) allows for the case q, = 0. In practice, an upper con-
fidence limit ql(O is used, which will be strictly positive (7).
This upper bound has come to be known as qt and provides a
measure of carcinogenic potency based on the linearized
multistage (LMS) model.

Point Estimates Versus Confidence Limits
The use ofa 95% upper confidence limit on q1 rather than its

maximum likelihood estimate has been the subject of some
discussion. Proponents ofbest estimates argue that the use ofup-
per confidence limits leads to unwarranted conservatism in risk
estimation (8). When decision-making allows for alaing risks
against benefits, it has also been argued that best estimates of
benefit should be compared to best estimates of risk. Upper
bounds on risk based on the linearized multistage model have
also been criticized in that they are highly insensitive to the data
on which they are based (9).

For various reasons, the U.S. Environmental Protection Agen-
cy (10) has taken the position that, in general, best estimates of
risk cannot be reliably computed at this time. In the absence of
a suitable best estimate ofrisk, the Agency advocates the use of
linearized upper bounds. This position is based in part on the fact
that the best estimate of q, may be 0, in conflict with the strict
linearity implied by Eq. (1). Even when positive, themaximum
likelihood estimator ofq, can be relatively unstable, with minor
perturbations to the data resulting in marked changes in its
estimated value (11).

Biologically Based Cancer Models
The Armitage-Doll model has been subject to criticisms that

it does not provide a complete description ofthe process ofcar-
cinogenesis. Specifically, the k-stages envisaged in the model are
largely phenomenological and do not necessarily represent well-
defined biological changes. In particular, when the number of
stages required to fit the data is large, it is difficult to interpret
these stages as specific mutational events. The model also fails
to provide for the development oftarget tissues with age and for
the dynamics of cells involved in neoplastic conversion.
Moolgavkar (12) and his co-workers (13,14) have developed a

two-stage biologically based model of carcinogenesis that ex-
plicitly provides for tissue growth and cell kinetics. This model
assumes that two mutations, each occurring during cell division,
are required for a stem cell to be transfonned into a malignant
cancer cell. Initiated cells that have sustained the first mutation
may be promoted through nongenotoxic mechanisms that in-
crease the net birth rate ofinitiated cells. Thorslund and Charnley
(15) have applied a form ofthis model in the estimation ofcancer
risks associated with exposure to chlordane and dioxin. However,
the estimability ofthe unknown model parameters requires fur-
ther study (16).

Range-of-Risk Estimates
Since precise mechanisms ofcarcinogenic action are geneally

unknon, it follows that no model, no matter how elaborate, can
claim to be correct. This uncertainty has promptd proposas for
the use ofa range-of-risk estimates based on different plausible
models. Calculation of a range-of-point estimates serves little
useful purpose and does not contribute to a real understanding
of the uncertainty in the extrapolation process. Since point
estimates depend on the fonn ofthe model selected, the number
of point estimates is limited only by the number of models
entertained.

In our view, a more realistic approach to expressing uncertain-
ty is to recognize that the risk could be as high as that predicted
by linear extrapolation or as low as 0. The risk will be 0 when a
thrshld exists below which neoplastic conversion does not oc-
cur. Paynter et al. (17) have suggested that a threshold may exist
for thyroid tumor induction, although the evidence in dtis regard
is not conclusive.

Is Linear Extrapolation Conservative?
Linear extrapolation often is criticized as being too conser-

vative. Schell and Leysieffer (18) show that the one-hit model,
which is linear at low to moderate doses, provides an upper
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bound on risk for any dose-response model satisfying an increas-
ing failure rate condition with dose. (This condition holds for
commonly encountered dose-response models, the probit model
being an exception.) Bailar et al. (19) show that a significant frac-
tion ofbioassays conducted for the National Toxicology Program
demonstrate supralinearity at high experimental doses and argue
that at low doses the one-hit model may thus not be conservative
in some cases. Crump et al. (20), Peto (2I), and Hoel (22) all
argue that low-dose linearity occurs when substances augment
existing carcinogenic processes. The formation ofDNA adducts,
which may be predictive ofcertain tumors induced by genotox-
ic carcinogens, has often been observed to be linear at very low
doses (23,24). The question is thus not so much if low-dose
linearity exists, but over what range the dose response is approx-
imately linear. For the multistage model, Crump et al.(20) have
shown that linear extrapolation will be quite accurate, at least
when the excess risk does not exceed the spontaneous risk.

TIssue Dosimetry
Measurements or predictions ofthe dose ofthe proximate car-

cinogen reaching the target tissue can be used to obtain more ac-
curate estimates of low-dose risks. This can be done using
physiologically based pharmacokinetic (PBPK) models that
describe the fate ofchemical substances in the body (25). These
models describe metabolic processes within a number ofrelevant
physiological compartments and have been successfully used to
model the metabolism of several chemical carcinogens (26).
When one or more steps in the process ofmetabolic activation

are saturable, the dose delivered to the target tissue may not be
directly proportional to the administered dose (27). In such
cases, risk estimates based on the administered dose can be
biased (28). At sufficiently low doses, however, most kinetic pro-
cesses will be first-order, in which case the relationship between
external and internal doses will be linear.

Linear Extrapolation
We have argued that dose-response curves for some car-

cinogens may be expected to be linear at low doses. Ifthe dose-
response curve is actually sublinear in the low-dose region,
linear extrapolation provides an upper limit on low-dose risk. In
this section, we first review previously proposed methods for
linear extrapolation and then describe our model-free approach.

Prvious Approaches
Gross et al. (29) suggested a method for linear model ex-

trapolation based on discarding data starting at the upper end of
the dose range until a linear model prvided an adequate descrip-
tion of the remaining data. Van Ryzin (30) suggested the use of
any model that fit the data reasonably well to estimate the dose
producing an excess risk of 1% and then using simple linear ex-
trapolation to lower doses. Gaylor and Kodell (31) proposed fit-
ting a model to the aailable data and then using linear exutapola-
tion below the lowest dose at which observations were taken.
Since the esimate at the lower doses mightbe unduly influenced
by the choice ofthe model used in the experimental dose range,
Famier et al. (32) suggested liner exrapolabon below the lowest
dose or the dose corresponding to an estimated risk of 1%,

whichever was larger.
Krewski et al. (33) propose an entirely model-free procedure

based on linear extrapolation below the lowest dose showing an
excess (not necessarily statistically significant) risk. Krewski et
al. (34) modified their procedure to consider linear extaplation
fiom all doses for which there were no statistically significant in-
creases in tumor incidence above the baseline level, selecting the
smallest slope for low-dose risk estimation. In a similar vein,
Gaylor (35) considered the smallest slope obtained from all the
possible combinations ofdata from the doses where the lowest
dose was in the convex portion of the dose-response curve. In
both cases, upper confidence limits on the slopes were used.
Both Krewski et al. (33) and Gaylor (35) showed that low dose
risk estimates based on these model-free procedures were
generally close to those obtained from the linearized multistage
model.

Model-Fre Approach
The only assumption that we wish to entertain in assessing

low-dose cancer risks is that of linearity of the dose-response
curve at low doses. Under this assumption, low-dose risk assess-
ment requires estimation ofthe slope ofthe dose-response at the
origin given by

> 0
Ad d=O

(4)

Without making specific assumptions concerning the functional
form of the dose-response curve other than low-dose linearity,
a natural estimator of( at a dose d close toO would be the slope

ad = [P(d) - P(O)J/d (5)

ofthe secant from (d, P(d)) to (0, P(0)), since Id-+f as d - 0.
This approximation suggests a simple model-free approach to
linear extrapolation.
Consider a bioassay with t+l dose levels 0 = do < d1

<.. . <d, where do = 0 corresponds to the control group. Of
then1 animuls at dose d1, suppose thatx, develop the lesion of in-
terest during the course of the study (i=0, 1, ... ,t). The prob-
abilityp, oftumor development at dose d, may then be estimated
by , = x; In,. Linear interpolation between a point

-

(I <i .
t) andj- yields the secant approximation to the linear compo-
nent of the dose-response curve.
To ensure that this approximation is reasonable, we need to

restrict the set [Pj, * **,P, 3 to some subset.., * * * P,.] of points
(1 5 1* S t)suchthatthis subsetlieswithinaregionofthedose-
response curve in which the secant approximations will not
underestimate the low-dose slope. After smoothing the propor-
tions so as to form a monotonically increasing set [pj3 using
isotonic regression, Gaylor (35) selected P' to correspond to the
convex region ofthe dose-response curve. Schmoyer (36) used
sigmoidal regression to smooth the dose-response curve,
yielding a value of t* up to which the smoothed proportions
would be convex. Both of these smoothing procedures can
notably alter observedproportions [Pj. Isotonic and sigmoidal
regression also raise technical complications when confidence
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limits on the smoothed proportions [fr} are considered (37).
Krewski et al. (34) adopted a simpler approach in which t* was

chosen to correspond to be the largest dose below the first dose
at which the observed response rate among the exposed groups
was significantly greater than the response in controls. (Here,
statistical significance is evaluated at the 5% level using the
Fisher-Irwin exact test.) Ifthe lowest dose exhibits a statistical-
ly significant increase in tumors, only this dose is used for ex-

trapolation. In this case, the results should be interpreted with
caution since there is less assurance ofconvexity. To allow for ex-
perimental error, an exact binomial upper confidence limitp1'O
was calculated onp, (i=1, ... t*), along with a lower confidence
limitpo(L) onpo. The minimum (positive) value ofthe t* secants
(Pil - po(L) I)di (i=l, . . . ,t*) is then used as an upper confidence
limit on the low-dose slope. Because no dose-response model has
been assumed, we refer to this as model-free extrapolation
(MFX).
Because the minimum ofup to t such secants is selected, the

overall confidence level associated with this procedure requires
consideration. By the Bonferroni inequality, an overall 95% con-

fidence level may be achieved using individual confidence limits
of 5/(t+1) %. Since not all t secants are used when t* < t, it is
possible that this Bonferroni bound may be improved upon. This
is currently under investigation.

Illustrative Examples
To illustrate the application of the model-free approach to

linear extrapolation, we consider the data on radiation-induced
stomach cancer shown in Table 1, previously analyzed by
Krewski et al. (34). These data are shown in graphical form in
Figure IA after re-expression in terms of relative risk. The secant
bounds based on those exposure groups not demonstrating a

significant increase in risk (p < 0.05) are shown in Figure 1B.
The secant with the smallest slope represents theMFX bound on
low-dose risk.
To compare theMFX approach with the traditional LMS, con-

sider the bioassay data shown in Table 2 on kidney tumors induc-
ed in Fischer 344 rats following oral exposure to nitrilotriacetic
acid (NTA) for 24 months (38). These same data are displayed
graphically in Figure 2A, along with the fitted multistage model
(39). The best-fitting model involves five stages but does provide
a good description of the dose-response curve.
The (100 - 5/6) = 99.17% upper confidence limits on the

response probabilities in each ofthe exposed groups are shown
in Figure 2B, along with the associated secant bounds on the low-
dose slope. (No secant is shown for the dose of2% NTA in the
diet, since the tumor response at this dose was significantly

Table 1. Deaths from stomach cancer in
A-bomb survivors in Hiroshima and Nagasaid.

Dose, Number Number Proportion
rads responding at risk responding
0 708 31581 0.02242
3.4 473 23073 0.02050

21.8 340 14942 0.02275
70.6 91 4225 0.02154
142.4 64 3128 0.02046
243.6 32 1381 0.02317
345.3 17 639 0.02660
526.4 29 887 0.03269
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FIGURE 1. Deaths from stomach cancer in A-bomb survivors in Hiroshima and
Nagasaki.

Table 2. Kidney tumors in Fischer 344 rats exposed to
nitrilotriacetic acid for 24 months.

Dose, Number Number Proportion
in diet responding at risk responding
0 0 127 0
0.02 0 48 0
0.20 0 48 0
0.75 1 91 0.011

1.50 2 91 0.022

2.00 12 48 0.250

greater than 0, the control response.) The minimum slope of
these secants occurs at a dose of 1.5% and has a value of0.061
per percent NTA in the diet.
To compare the MFX approach with the traditional LMS,

consider the bioassay data shown in Table 2 on kidney tumors
induced in Fischer 344 rats following oral exposure to
nitrilotriacetic acid (NTA) for 24 months (38). These same data
are displayed graphically in Figure 2A, along with the fitted
multistage model (39). The best-fitting model involves five
stages but does provide a good description ofthe dose-response
curve.
The (100 - 5/6) = 99.17% upper confidence limits on the

response probabilities in each ofthe exposed groups are shown
in Figure 2B, along with the associated secant bounds on the
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low-dose slope. (No secant is shown for the d4
the diet, since the tumor response at this dose
greater than 0, the control response.) The nf
these secants occurs at a dose of 1.5% and has a

XTIr-A :_ 4-1* A:-

sidered to avoid studies with larger mammals such as dogs or

Dose Response monkeys in which exposure occurred over a relatively small frac-
tion of their lifespan. Second, experiments in which exposure
took place by more than one route were excluded because of
pharmacokinetic complications arising with multiple exposure
routes. Third, only experiments with at least two dose groups (in
addition to the unexposed control group) were used in keeping
with minimal standards ofbioassay design. Fourth, experiments
with reduced survival among exposed animals were excluded
since this could bias tumor occurrence rates downward. (Using
only low doses withMFX would help to alleviate this problem,
as reduced survival generally occurs at higher doses.)

Experiments selected according to these criteria often included
data on tumor occurrence at more than one site. Gross aggrega-

1b50 2-00 tions of sites (all target sites or tumor bearing animals) were ex-
cluded on the basis that most carcinogens appear to be site

Low Dose Slope specific. Similarly, aggregations of all tumors at a given site were
omitted. For our purposes, only the most significant site was con-
sidered, this being the site on which most concern would likely
focus in practice. Here, significance was defined in terms of the
p-value ofthe Cochran-Armitage test for increasing linear trend
in tumor response with increasing dose (43). In cases where two
or more sites had the same p-value, the one with the smallest
TD5o (the dose resulting in 50% tumor incidence) was selected.
To ensure that compounds selected for analysis were considered
in some sense to be carcinogens, only those results for which the
(one-sided) p-value for the trend test was less than 1% were ad-
mitted. Additional evidence ofcarcinogenicity was required by

1-50 2t00 further demanding an expressed opinion by the original in-
vestigators that the compound was considered carcinogenic.

Application ofthese criteria to the Gold database yielded 585
ilotriacetic acid for 24 experiments for analysis. The slope ofthe dose-response curve

at the origin was estimated using MFX and the LMS model. In
the latter analyses, doses associated with a down turn in the dose-

oseof2% NTA in response curve at high doses were omitted. In 13 cases, the sam-
ose of2% NTAin ple size limitations for MFX were exceeded. This left 572 ex-
was significantly periments for comparison purposes.
unimum slope of The distribution ofthe ratios (MFX/LMS) ofthe two estimates
value of0.061 per across the 572 data sets is shown in Figure 3. The median ratio

percent N IA in tne wiet.
An upper confidence limit on the slope of the dose-response

curve at the origin can also be derived under theLMS model. For
comparability with MFX, this is calculated as 10-2/d* where d*
represents a 95% lower confidence limit on the dose correspon-
dingtoanadditional riskof1% (39). (This differs slightly fromq*
when the background tumor response rate is not low.) This leads
toa slope of0.024, a factorof2.5 lowerthan obtained with MFX.

Empirical Evaluation
The general performance of our model-free extrapolation

(MFX) procedure in comparison with the traditional LMS may
be empirically evaluated by applying both methods to ex-

perimental data on a more extensive series of test compounds. In
this regard, Gold et al. (40-42) have assembled a useful reference
database ofbioassay data drawn from 3749 experiments reported
in the literature. Here, an experiment is defined in terms ofresults
for one sex of one species from one research report.
For our purposes, a subset of this database was selected for

analysis. First, only data on rats, mice, and hamsters were con-
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was 1.3, indicating a tendency toward slightly higher slope
estimates with MFX than with LMS. In 443 of 572 cases, the
MFX estimate was within a factor oftwo of the LMS estimate.
There were eight instances in which MFX exceeded LMS by

a factor of more than 10-fold. A case-by-case examination of
those cases revealed a leveling offor even a decrease in the dose-
response curve at higher doses, which tended to reduce the value
ofq*. SinceMFX does not generally use high-dose data, a higher
(and likely more accurate) estimate of the slope of the dose-
response curve at low doses is obtained.

Summary and Conclusions
The quantitative assessment of risks associated with low-level

exposure to carcinogens present in the environment continues to
be an important problem upon which consensus remains to be at-
tained. This issue is particularly contentious when extrapolations
not only from high to low doses but from laboratory animals to
humans must be made. Nonetheless, such estimates are often
needed for purposes of risk management.
The LMS model has traditionally been used for low-dose risk

estimation. It is now widely recognized that this model provides
an incomplete description of chemical and radiation car-
cinogenesis, neglecting important factors such as tissue growth
and cell kinetics. Dose-response relationships demonstrating a
high degree of curvature at high doses can occur as a result of
cellular proliferation or saturation of metabolic processes re-
quired to form the proximate carcinogen, but can be explained
only with a large number of stages in the multistage model.
Although more biologically based models have emerged within
the last decade, these models involve additional unknown
parameters that may not be directly estimable using
epidemiological or toxicological data on tumor occurrence rates.

Irrespective of the actual dose-response model, there are a
number ofarguments that suggest that the dose-response curve
may be linear at low doses. Specifically, low-dose linearity may
be expected to hold with agents that act by augmenting ongoing
carcinogenic processes. DNA adducts formed with genotoxic
carcinogens also appear to be linearly related to dose at low levels
of exposure.

For these reasons, a model-free approach to carcinogenic risk
assessment that assumes nothing more than low-dose linearity
seems appealing. The model-free extrapolation (MFX) pro-
cedure described in this article is based on a series ofsecant ap-
proximations to the slope ofthe dose-response curve in the low-
dose region, with the minimum of such approximations selected
for risk assessment purposes. This represents the best upper con-
fidence limit on low-dose risk consistent with the data.
An analysis of572 experiments demonstrated thatMFX yields

estimates of low-dose risk are largely comparable to estimates
derived under the LMS model. In addition to making a minimal
number ofassumptions, MFX does not make use ofdata at high
doses where survival may be impaired or normal physiological
function disrupted.
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